

0040-4039(94)01741-7

SYNTHESIS OF HYDROPEROXIDE VIA PHOTOOXYGENATION FOR A MODEL AEQUORIN BIOLUMINESCENCE[†]

Katsunori Teranishi,* Kazuo Ueda,# Hidekazu Nakao, Makoto Hisamatsu and Tetsuya Yamada

School of Bioresources, Mie University, Kamihama-thou, Tsu 514, Japan 'Aburahi Laboratories, Shionogi & Co., Ltd., **Koka-cho,** Koka-gun, Shiga 520-34, Japan

Abstract : Unstable hydroperoxide of coelenterazine (Oplophorus Iuciferin) analog has been synthesized by the reaction of coelenterazine analog with polymer-bound Rose Bengal via photooxygenation. This *compound may be a key intermediate model in the bioluminescence of aequorin and the chemiluminescence of coelenterazine.*

Aequorin (1) **is a calcium-binding protein found in jellyfish,** *Aequorea Victoria,* **which** emits blue light $(460 \text{ nm} \sim 470 \text{ nm})$ by the action of calcium ions to this luminescence system.¹ A number of studies of molecular mechanism of the luminescence reaction, and applications of the apoprotein 2 and chromophore 3 have recently progressed. Aequorin is known to have a chromophore, coelenterazine *(Oplophorus* luciferin) 2, as the light emitting **species linking to this protein through a peroxidic bond as illustrated in** 1. In 1978, Shimomura and Johnson reported that a yellow compound obtained by reduction of aequorin with NaHSO₃ has a tertiary alcohol at the imidazolone carbon to which the p-hydroxybenzyl group is attached.⁴Kishi et al. supported this result by measuring ¹³C-NMR spectra of 1 and concluded its structure through incorporation experiment of ${}^{18}O_2$.⁵ Besides, coelenterazine and its analogs emit blue light in organic solvents, such as dimethyl sulfoxide or dimethylformamide, under aerobic condition without apoprotein.⁶ While the molecular mechanism of these bio- and chemiluminescence is still uncertain, the working hypothesis outlined in Scheme 1 is consistent with the available data. 7 **Our interest** in the chemistry of coelenterazine peroxide has prompted us to synthesize hydroperoxide related to 3 and to study this chemistry. We provide herein the first report of synthesis of hydroperoxide of coelenterazine analog and the chemiluminescence of this hydroperoxide.

t The first author wishes to dedicate this paper to Professor Toshio Goto (Nagoya University) who deceased on August 29. 1990.

Scheme 1. Posturated mechanism of luminescence reaction.

Photooxygenation of coelenterazine analog 4 8 (0.10 g. 0.26 mmol). having terr-butyl group at 2 position of the imidazopyrazinone, in CH_2Cl_2 (20 ml) at -95 ^oC with polymer-bound Rose Bengal 9 (0.40 **g) as a sensitizer and a 220-W high pressure sodium lamp gave mixtures of products (Scheme 2). This reaction solution produced chemiluminescence** $(\lambda_{\text{max}} = 395 \text{ nm})$ **above about -50 °C. After keeping this solution for 1 h at -20 Oc followed** by warming to **ambient temperature, amide 7a** was observed as a major **product in the crude reaction mixture by lH-NMR spectroscopy and HPLC analysis** . This **product is presumably derived from dioxetaoooe da by the well-established cleavage process. 7a was isolated in 27 % yield by silica gel column chromatography and identified by comparison of its spectral data with a** sample prepared by an independent method ¹⁰.

After photooxygenation of 4 in CD₂Cl₂ by the above method, the sensitizer was removed by filtration with a tetrafluoroethylene-membrane filter below -80 °C. In this crude reaction mixture, hydroperoxide 5 was present as a major product as shown by ¹H-NMR analysis at -80 °C.¹¹ However, **7a** and dioxetanone **6a were not detected** in this solution. Subsequently IH-NMR spectrum **of this reaction mixture at -50 Oc** showed generation of a small quantity of 7a and that of this reaction mixture at -20 °C showed that 7a was nearly the exclusive product. The hydroperoxide 5, which are only stable below about -50 °C, was converted to **7a** in good yield on warming to -20 °C.

The chemiluminescence spectra (λ_{max} = 395 nm) of 10⁻⁴ M solutions of the photooxygenated reaction **mixture in CH2C12 or** CH3CN at -20 Oc **match the fluorescence** spectra of **7a** in the Same conditions (Figure). **Addition of** NaOH (10 equiv. for 4) to 104 M solution of the photooxygenated reaction mixture in CH₃CN produced blue chemiluminescence (λ_{max} = 470 nm) at -20 °C (Figure). This chemiluminescence was identical to the fluorescence spectrum of **7a** in CH3CN with excess NaOH. These findings demonstrate that 5 is converted to **6a** or dioxetanone 6h **followed** by generation of singlet excited 7a or singlet excited amide anion 7b.

Peroxide derivative 8 was readily available (Scheme 2). Photooxygenation of 4 at -95 °C in CH₂Cl₂ followed by addition of trimethylsilyl cyanide (100 equiv.) at -95 \degree C and keeping at -80 \degree C for 14 days smoothly afforded trimethylsilyl peroxide 8 (16% yield from 4) and **7a (6%** yield). Isolation of 812 was carried out by means of HPLC (elution condition : Fuji Silysia Chromatorex-ODS column, CH3CN as elution solvent, at 10 °C), though 8 is labile (half-lives at 25 °C; 5 min in CH₃OH, 16 min in CH₃CN). Compound 8 decomposed to only 7a in CH₂Cl₂, but in CH₃CN or CH₃OH, to 7a and 10 at the ratio 2 to 1. The column chromatography gave **7a** in 6% **yield, indicating that a portion of 8 decomposed to 7a under these conditions.**

Figure. Chemiluminescence spectra of the photooxygenated solution of 4 in CH₃CN at -20 $^{\circ}$ C (\leftarrow) and in CH₃CN with NaOH (10 equiv.) at -20 $^{\circ}$ C (- - -). Fluorescence spectra of $7a$ in CH₃CN at -20° C (........) and in CH₃CN with excess NaOH at -20 $^{\circ}$ C (- . - . -).

Hydroperoxide 5 was reduced to carboxylic acid 9 with dimethyl sulfide (50 equiv.) for 2 h at -80 oC.13 9 was identified by comparison of silica ge1 **TLC and HPLC** analysis with those of an authentic sample.¹⁴ 9 was rapidly converted to 10¹⁵ by treatment with H₂O or silica gel column chromatography at -20 °C.

This study have shown for the first time that photooxygenation of coelenterazine analog 4 can afford hydroperoxide 5 and that thermal decomposition of 5 generate singlet excited **7a, ?b,** and corresponding chemiluminescence. We will report the chemiluminescence of trimethylsilyl peroxide 8.

Acknowledgments. This research was supported by the Sasakawa Scientific **Research Grant from The Japan Science Society and the Grant In Aid for Scientific Research (No. 5760098), Ministry of Education, Science and Culture.**

References and Notes

- 1. (a) O. Shimomura, F. H. Johnson and Y. Saiga, J. Cell Comp. Physiol., 59, 223 (1962). (b) *idem*, *ibid, 62. 1 (1963).* **(c) Review article, T. Goto, "Marine Natural Products", ed by P.** Scheure, Academic Press Inc., New York pp 179-222 (1980).
- 2. (a) S. Inoue, Y. Sakaki and F. 1. Tsuji, Proc, Narl. *Acod. ScL USA, 86.80* (1989). (b) J. Nakajima-Shimada, H. lida, F. I. Tsuji and Y. Anraku, *Biochem. Biophys. Res. Commun.*, 174, 115 (1991). (c) Y. Ohmiya, M. Ohashi and F. I . Tsuji. *FEBS Left_. 301. 191* (1992).
- 3. (a) 0. Shimomura, 3. Musicki and **Y. Kishi.** *Biochem. J. 251.405* (1988). (b) *idem. ibid,* **261,913** (1989). **(c)** C. F. Qi, Y. Gomi, M. Ohashi, Y. Ohmiya and F. I. Tsuji. J. *Chem. Sot.. Chem.*

Commun., 1307 (1991). (d) **C.** F. Qi. Y. Gomi, T. Hirano, M. Ohashi, Y. Ohmiya aod F. I. Tsuji, J.Chem. Soc., Perkin Trans.1, 1607 (1992).

- 4. (a) 0. Shimomura and F. H. Johnson, *Proc. Nati. Acud. Sci. USA* ,75, **2611** (1978). (b) K. Teranishi, M. Isobe, T. Yamada and T. Goto, *Tetrahedron L&Z., 33, 1303* (1992).
- 5. B. Musicki, Y. Kishi and O. Shimomura, J. Chem. Soc., Chem. Commun., 1566 (1986).
- 6. (a) K. Hori, J. E. Wampler and M. J. Cormier, J. Chem. Sot.. *Chem. Commun., 492 (1973).* (b) K. Teranishi and T. Goto, Chem. Lett., 1423 (1989). (c) K. Teranishi and T. Goto, Bull. Chem. Soc. Jpn.,63, 3132 (1990).
- 7.0. Shimomura and F. H. Johnson, *Biochem. Biophys. Res. Commun., 44,340* (1971).
- 8. K. Teranishi, M. Isobe and T. Yamada, Tetrahedron Lett., in press.
- 9. A. P. Schaap, A. L. Thayer, E. C. Blossey and D. C. Neckers, J. Am. *Chem. Sot.. 97. 3741* (1975).
- 10. Authentic sample of **7a** was prepared by treatment of 10 with pivaloyl chloride and triethylamine in $CH₂Cl₂$ at 20 °C.
- 11. $5:$ ¹H-NMR (CD₂Cl₂, -80 °C, 400 MHz), δ 1.22 (9H, s), 3.89 (3H, s), 4.17 (2H, br.), 7.03 (2H, d, $J = 8.9$ Hz), $7.2 \sim 7.4$ (3H, m), 7.32 (1H, s), 7.69 (2H, d, $J = 8.8$ Hz), 7.92 (2H, d, $J = 8.9$ Hz).
- 12.8 : amorphous powder, IR v max (KBr) cm⁻¹: 2950, 1755, 1600, 1510, 1480, 1440, 1250. ¹H-NMR (CDzCl?, 15 Oc, *270* MHz), b 0.18 (9H, s), 097 (9H, s), 3.83 (3H, s), 4.12 (lH, d, J = 13.9 Hz), 4.35 (1H, d, J = 13.9 Hz), 6.94 (2H, d, J = 9.0 Hz), 7.2 ~ 7.4 (3H, m), 7.29 (1H, s), 7.49 (2H, d, J $= 7.3$ Hz), 7.71 (2H, d, J = 9.0 Hz). ¹³C-NMR (CDCl₃, 15 °C, 270 MHz), δ -1.09, 24.18, 38.84, 39.86, 55.33, 106.49, 107.37, 114.61, 126.31, 126.78, 128.10, 128.32, 129.82, 132.03, 136.02, 150.79, 158.80, 159.82, 177.29. SIMS m/z 492 [M+1]⁺.
- 13. The mechanism of conversion of 5 into 9 may he shown in following scheme.

14. Authentic sample of 9 was prepared as shown in following scheme.

15. Y. Kishi, H. Tanino and T. Goto, *Tetrahedron L&t.. 27,2747 (1972).*

(Received in Japan 13 *May* 1994, *accepted* 10 *Augurt* 1994)